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The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska 
 

Exxon Valdez Oil Spill Trustee Council Project 16120114-J 
Final Report 

 

Study History:  Begun in fall 1997 as part of the joint National Oceanic and Atmospheric 
Administration and National Science Foundation’s Global Ocean Ecosystems Dynamics 
program, the Seward Line has become the most comprehensive long-term 
multidisciplinary sampling program in the coastal Gulf of Alaska, monitoring changes in the 
oceanography of a region that is critical to Alaska’s commercial and subsistence fisheries, 
and tourism economies. From 1998 to 2004, conditions along the Seward Line were 
sampled on 6-7 cruises per year spanning from March to December. When field studies 
ended in December 2004, the North Pacific Research Board continued to fund the program, 
reducing its scope to a cruise each May and September, with a focus along the Seward Line 
and the main passageways in western Prince William Sound. In 2010, the Alaska Ocean 
Observing System began to also provide financial support for the Seward Line 
observations. During 2011-2013, the Seward Line was embedded within the North Pacific 
Research Board’s Gulf of Alaska Integrated Ecosystem Research Program which added 
determination of microzooplankton analysis to many cruises. With the addition of Exxon 
Valdez Oil Spill Trustee Council support through Gulf Watch Alaska in 2012, additional 
sampling stations were added in eastern Prince William Sound passageways. Finally, 
elevation of the Seward Line to a Long-Term Monitoring program by NPRB during the 
summer of 2014 has allowed the permanent addition of microzooplankton, seabird and 
marine mammal observations to cruise activities.  

Abstract:  The ocean undergoes year-to-year variability in the physical environment, 
superimposed on longer-term cycles and potential long-term trends. These variations 
influence ocean chemistry and propagate through the lower trophic levels, ultimately 
influencing fish, seabirds and marine mammals. The Seward Line program monitors these 
changes in physics, chemistry and lower trophic levels (i.e., plankton) to describe the 
current state and natural variability inherent in an ecosystem at risk of significant 
anthropogenic impact. These observations are the basis for critical indices of ecosystems 
status that help us understand key aspects of stability or change in upper ecosystem 
components over both the short and longer-term. During the 2012-2016 study years, the 
ecosystem has been affected by three consecutive years of warm-water anomalies; these 
have altered phytoplankton community structure and increased the co-occurrence of 
warm-water zooplankton species with the historic subarctic assemblage typical of the 
region. Overall, the anomalous phytoplankton and zooplankton compositions have resulted 
in displacement of zooplankton community structure and alteration of energy flow 
pathways. 

Key words:  biological, chemical, Gulf of Alaska, marine mammals, nutrients, 
oceanography, physical, phytoplankton, Prince William Sound, seabirds, zooplankton 

Project Data:  Data exist in three major groups: ocean physics, nutrients and chlorophyll, 
and species-resolved zooplankton catches.  
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There are no limitations on the use of the data, however, it is requested that the authors be 
cited for any subsequent publications that reference this dataset. It is strongly 
recommended that careful attention be paid to the contents of the metadata file associated 
with these data to evaluate data set limitations or intended use. 

Data Location - all data reside online in the publically available AOOS data portal 
(https://portal.aoos.org/gulf-of-alaska.php#metadata/e25fe1f2-1c98-44f6-856f-
5d61c87c0384/project).  

Data Contact – Carol Janzen, 1007 W. 3rd Ave. #100, Anchorage, AK 99501, 907-644-6703, 
janzen@aoos.org, http://portal.aoos.org/gulf-of-alaska.php.  
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EXECUTIVE SUMMARY 
The Seward Line program has sampled the physical, chemical and biological properties 
along a 150 mile-long transect from the mouth of Resurrection Bay, Alaska to offshore 
waters using ships for nearly 20 years. It’s principle tools are electronic packages that 
profile the physical properties of the water column (e.g., temperature and salinity), bottles 
that sample discrete depths for measuring water chemistry (e.g., nutrients) and single-
celled  organisms (i.e., phytoplankton and microzooplankton), nets that sample the 
multicellular meso- and macro-zooplankton, and observers that census seabirds and 
marine mammals.  Its major objectives are to monitor the state of these ecosystem 
components, describe their variability, and understand the relationships between them to 
thereby improve our understanding and management of this highly productive habitat.  

Long time-series are required before meaningful patterns or trends begin to emerge in 
oceanographic studies. Multi-decadal observations have shown large interannual 
variability impacted by climatological forcing, but until recently there has been limited 
systematic change in the ecosystem. The warm-water anomaly of 2014-2016, however, has 
resulted in a smaller and delayed spring bloom and a decrease in phytoplankton mean size. 
Spring zooplankton communities appeared largely unaffected, but changes in late-summer 
zooplankton communities were apparently driven by an increased contribution of 
advected warm-water and smaller-sized taxa. Seabird communities also showed a response 
to the recent anomaly, with birds concentrated inshore during warm years, where they 
often showed signs of nutritional stress. These changes foreshadow a future of reduced 
production regimes that would be expected if the frequency and/or intensity of such warm 
events were to increase, with negative consequences to existing fisheries. 

INTRODUCTION 
Long time-series are required for scientists to tease out secular change (and infer cause) in 
the face of substantial year-to-year variability. Like other regions, the Northern Pacific 
undergoes significant interannual variability, driven partially by variations in basin- or 
global-scale climate (e.g., El Niño, the Pacific Decadal Oscillation). Longer-term variations 
referred to as “regime shifts” have occurred in the past, and will likely occur again. These 
are expressed as fundamental shifts in ecosystem structure and function, such as the 1976 
regime shift that resulted in a switch within the Gulf of Alaska (GOA) from a shrimp-
dominated fishery to one dominated by pollock, salmon, and halibut. Long-term 
observations are also critical to describe the current state, and natural variability inherent 
in an ecosystem at risk of significant anthropogenic impact such as occurred during the 
Exxon Valdez oil spill. Given the potential for such profound impacts, the Seward Line Long-
term Observation Program (http://www.sfos.uaf.edu/sewardline/) provides these critical 
observations on the current state of the northern GOA ecosystem.  

Inherent in the concept of any long-term observation program is the ability to assess effects 
of climate variation. Beyond this long-term aspect, the sampling program is designed to 
capture the major gradients in lower tropic level production as estimated from broad-scale 

http://www.sfos.uaf.edu/sewardline/
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analyses of satellite ocean color imagery (assumed to represent phytoplankton production 
gradients). This design allows us to investigate the mechanisms by which variations in 
physical and chemical conditions translate into changes in the composition and abundance 
of organisms in the planktonic food web, and how apex predators, such as seabirds, 
integrate and reflect these changes. The first-order driver of production variability is the 
intense seasonality of the system (Brickley and Thomas 2004, Waite and Mueter 2013). 
Our cruises capture the major spring-late summer gradient in this seasonality, while 
retaining a focus on important periods for the life cycles of various zooplankton species. 
The early May period was selected to capture the peak productivity associated with the 
spring bloom. The consistent timing of the May cruise has allowed us to look at phenology 
shifts (e.g., Mackas et al. 2012) in the large Neocalanus spp. copepods that dominate the 
spring zooplankton biomass (Hopcroft and Coyle, in prep). The September cruise captures 
the end of the low productivity oceanographic summer, when smaller phyto- and 
zooplankton dominate, and precedes the stormy fall overturn. Changes in the 
microzooplankton community are likely to accompany this seasonal gradient, as hinted at 
in earlier work showing, for example, higher abundances of dinoflagellates in summer 
compared to spring (Strom et al. 2007, Strom and Fredrickson 2008).  

Dominant spatial gradients in the coastal GOA are the east-west contrast (recently explored 
by the North Pacific Research Board (NPRB) Gulf of Alaska-Integrated Ecosystem Research 
Project (GOA-IERP) program) and the cross-shelf zonation (Brickley and Thomas 2004, 
Waite and Mueter 2013). The Seward Line station layout is explicitly designed to capture 
the important cross-shelf divisions (described above), as well as incorporating Prince 
William Sound (PWS) as a largely enclosed, estuarine “end member” of this coastal 
continuum. Mating biological observations (e.g., plankton community composition) directly 
to physical and chemical sampling allows us to define these zones according to their 
oceanographic properties rather than fixed geographic coordinates (Coyle and Pinchuk, 
2003, 2005). This is crucial in a region where variations in cross-shelf transport, down- or 
upwelling intensity, and mesoscale eddy activity can shift frontal boundaries rapidly 
(Stabeno et al. 2004). It is likely that multi-decadal observation of the coastal GOA is 
required for broad-scale atmospheric indices to emerge, although it has been proposed that 
some such as the El Niño Southern Oscillation may have little impact on the region’s shelf 
seas (Stabeno et al. 2004). Most recently, a warm-water anomaly referred to as “the Blob” 
(Bond et al. 2015) has had far ranging impacts in the GOA. Ultimately, the Seward Line 
observations will help us understand how environmental effects (i.e., oceanographic 
conditions and their variability) relate to higher-order ecological properties such as spatial 
and temporal coherence of communities, resilience and diversity (Beaugrand et al. 2010, 
Wiltshire et al. 2008). 

OBJECTIVES 
The scientific purpose of this project is to develop an understanding of the marine 
ecosystem response to climate variability, and provide baselines against which to assess 
anthropogenic influences on the GOA ecosystem. Toward this end, the Seward Line cruises 
on the GOA shelf determine the physical-chemical structure, phytoplankton biomass and 
size composition, and the distribution and abundance of zooplankton, along with their 
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seasonal and interannual variations. Some of the data are compared with historical data 
sets whereas other data sets are a more recent product of our continuing sampling effort.  

Specifically, the objectives for cruises each May and September are: 

1. Determine thermohaline, velocity, and nutrient structure of the Seward Line across 
the GOA shelf, and at stations throughout PWS (Fig. 1). 

2. Determine phytoplankton (chlorophyll) biomass and size distribution. 

3. Determine the distribution and abundance of meta-zooplankton. 

4. Determine the distribution and abundance of microzooplankton (starting in 2014). 

5. Opportunistically, determine rates of growth and egg production of selected key 
zooplankton species. 

6. Support determination of carbonate chemistry (i.e., ocean acidification).  

7. Determine distribution and composition of seabirds (and marine mammals) along the 
Seward Line, PWS and Kenai coastline. 

8. Provide at-sea experience for graduate and undergraduate students. 

Objectives 4-8 are primarily supported through other consortium funding, as were 
proposed rates of primary production, although this distinction was not made clear in the 
original proposal. Consequently, this report focuses on Objectives 1, 2, and 3, which were 
primarily supported by Exxon Valdez Oil Spill Trustee Council (EVOSTC) funds, while other 
objects may be covered in lesser detail. 

METHODS 

Project Design and Conceptual Approach 
Core program: The Seward Line Program consists of 13 primary and 9 secondary stations 
along the Seward Line, and 12 stations in PWS (eastern PWS stations were added in 2012) 
sampled in May and early September from the U. S. Fish and Wildlife Service (USFWS) 
vessel R/V Tiglax (Fig. 1). Beginning in 2014, we added an additional two stations to the 
offshore end of the line to ensure coverage of the oceanic ‘end member’ of this coastal 
ecosystem.  

Oceanographic sampling methodology has remained stable since sampling began in the fall 
of 1997 (Weingartner et al. 2002), although the logistics of vessel availability (R/V Tiglax) 
has pushed summer sampling from mid-August to early/mid-September. All hydrographic 
and bottle-based sampling is conducted during the day, as well as collection of the smaller 
zooplankton species that do not migrate vertically, and do not avoid nets. Seabird and 
mammal observations are made during station transits. At night, sampling is conducted for 
the larger and more mobile zooplankton, many of which can only be sampled efficiently 
during their daily migration toward the surface under the cover of darkness. Although this 
protocol results in some backtracking along the transect line, it ensures that all data can be 
employed in analysis without biases arising from diel cycles. At present, there are no 
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autonomous or remote sensing technologies that allow sufficient sampling of the biological 
components of this program – they can only be adequately assessed by vessel-based 
observations. Nonetheless, the Seward Line program provides the opportunity for testing 
and validating any such technologies as they become available.  

Hydrography and nutrients 
Each station includes high-resolution vertical profiling of water properties (including 
temperature, salinity, chlorophyll fluorescence, photosynthetically active radiation (PAR), 
oxygen) to within 4 m of the bottom using a Seabird 911Plus conductivity-temperature-
depth (CTD) with dual temperature, conductivity and oxygen sensors. Dissolved inorganic 
nutrients (phosphate, silicic acid, nitrate, nitrite, ammonium) and carbonate chemistry 
(a.k.a., “Ocean Acidification” parameters) are collected from rosette (Niskin) bottles that 
sample at 10 m depth intervals in the upper 50 m, and at irregularly spaced but consistent 
depths to the bottom. Water samples are analyzed for dissolved inorganic carbon (DIC) and 
total alkalinity (TA) from which the partial pressure of carbon dioxide (pCO2), pH, and 
calcium carbonate saturation states (Ω) are calculated. Oxygen samples are collected from 
rosette bottles for calibration of high-resolution sensors. Nutrient samples are collected, 
filtered (0.4 µm), frozen, and transported to laboratories at the University of Alaska 
Fairbanks (prior to 2013) or at the National Oceanic and Atmospheric Administration 
(NOAA) Pacific Marine Environmental Laboratory (PMEL) in Seattle (after 2012) for 
analysis. Nutrients and oxygen are measured according to specifications set forth by the 
World Ocean Circulation Experiment (WOCE; Gordon et al. 1993). The autoanalyzers used 
at PMEL are continuous flow analyzers with segmented flow and colorimetric detection, 

Figure 1. The Seward Line’s primary 
stations, with locations of process 
studies in purple. Orange stations in 
eastern PWS were added in 2012. 
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and have been successfully used to collect high-precision nutrient data for World Ocean 
Circulation Experiment, Climate Variability and Predictability, Global Ocean Ecosystem 
Dynamics, and Fisheries Oceanography Coordinated Investigations programs.  

The physical and chemical data are used to quantify the seasonal, interannual, and along- 
and cross-shelf distributions of water masses and their variability. Interdecadal time scales 
are also addressed through use of ship-based sea surface temperatures, upwelling indices, 
the Pacific Decadal Oscillation (and other atmospheric indices), oceanographic buoy data, 
and the EVOSTC-supported continuous measurements at GAK 1 (EVOSTC project 
16120114-P). Although limited to surface observations, satellite sensor data is used to 
place our shipboard data in broader spatial and temporal contexts (Appendix 1). These 
data, combined with atmospheric and oceanographic model reanalysis hindcasts, can help 
characterize aspects of the system that we do not directly measure. This holistic approach 
to interpreting the physical environment is critical to a physics-to-birds-and-mammals 
understanding of the GOA ecosystem.  

Chlorophyll  
Chlorophyll a is the most widely used index of phytoplankton, and one of the few biological 
parameters that can be sensed in situ or remotely by satellites. Chlorophyll a 
concentrations are determined at all stations as a measure of phytoplankton biomass and 
as a means to calibrate in vivo fluorescence sensors on the CTD package. We coordinate 
sampling depths with water column chemistry measurements (i.e., at 10 m intervals in the 
upper 50 m). Samples are collected with the rosette on up-casts and filtered at low vacuum 
onto glass fiber (0.7 µm effective pore size) filters. At most stations particles are size-
fractionated through 20 µm pore-size polycarbonate filters to estimate phytoplankton 
biomass partitioning into ≥20 and <20 µm size classes. Previous work has shown that these 
two size classes respond to different sets of environmental conditions and have different 
fates in the coastal GOA food web (Strom et al. 2007, 2010). In the past, chlorophyll 
samples were stored frozen for post-cruise fluorometric analysis (Parsons et al. 1984). 
Recent concerns about degradation of pigments by this approach (Wasmund and Topp 
2006) have resulted in the extraction process commencing immediately after filtration and 
fluorometry conducted on shipboard.  

Phytoplankton and Microzooplankton 
Determination of phyto- and microzooplankton composition and biomass provides 
information on the functioning of the ecosystem, and responses to environmental forcing. 
Knowledge of phytoplankton composition allows us to relate physical processes (mixing, 
light availability) and nutrient supplies to the nature of the production response. Large 
chain diatoms may be particularly important in connecting pelagic production with the 
benthos. Large heterotrophic dinoflagellates can respond strongly to diatom blooms; their 
biomass indicates potential grazing impact of microzooplankton on diatom blooms, a major 
trophic transfer pathway in coastal GOA waters sampled so far (Strom et al. 2001, 2006, 
2007). Large microzooplankters are also important prey for the crustacean zooplankton 
(Liu et al. 2005, 2008). In general, knowledge of phyto- and microzooplankton composition 
and biomass is essential for evaluating the food web structure and potential trophic 
transfer efficiency of the region.  
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Phytoplankton community composition (primarily diatom and dinoflagellate identification) 
is assessed using inverted light microscopy of formalin-fixed samples. Acid Lugol’s fixation 
and inverted light microscopy (Sherr and Sherr 1993) are used to identify, count and size 
all microzooplankton ≥15 µm in size (using a semi-automated digitizing system, Roff and 
Hopcroft 1986). Biomass is estimated from microzooplankton cell volumes using published 
conversion factors (Strom et al. 2006, 2007). The ≥15 µm size class of microzooplankton 
can be directly consumed by mesozooplankton. All phytoplankton and microzooplankton 
sampling was confined to the same surface mixed layer (50 m and above) as employed for 
chlorophyll determination. 

Primary Production 
Intermittent point measurement of primary production using both stable and radio-
isotopes over the past 2 decades have highlighted that the intense day-to-day (and within 
day) variability in solar irradiance due to cloud cover obfuscates attempts to estimate the 
magnitude or underlying patterns in productivity (Strom et al. 2010). At best simple 
shipboard approaches using ambient light establish the upper and lower limits of potential 
production. More useful insights into primary production are gained through short term 
incubations that establish photosynthetic–irradiance curves (e.g., Strom et al 2016), 
however such determinations are only possible using radio-isotope approaches that cannot 
be licensed on the vessel routinely employed by this program.  

Ocean color as observed by satellites offers more appropriate times frame over which to 
estimate relative productivity. Through appropriate interpolation and averaging of pixels, 
it is possible to construct weekly, monthly or seasonal values of chlorophyll which over 
these longer periods tend to correlate with the magnitude of primary production. Here we 
generated 8-day mean chlorophyll concentrations from MODIS Aqua for a 100 km wide 
swath center along the Seward Line. These data were further averaged to yield a “spring” 
(April-May) and summer (June-August) value, for which anomalies were calculated over 
the life of this satellite (2003-present).  

Metazooplankton  
Metazoan zooplankton represent the key linkage between production by single-celled 
organisms, and larger organisms such as fish, seabirds and marine mammals. Although 
typically considered as a single unit, the term encompasses a wide array and vast size 
range of species for which no one piece of sampling equipment can suffice. To address this 
challenge, our sampling uses three different types of plankton nets. During daytime, 
mesozooplankton samples are collected with a Quad net consisting of 25 cm diameter nets 
of 2.6 m length equipped with General Oceanics flowmeters. A pair of these nets is 
constructed of 150 µm mesh and samples small, primarily early copepodid stages of 
calanoids (e.g., Coyle and Pinchuk 2003, 2005), while nauplii and the smallest copepodid 
stages of neritic species are sampled with a pair of nets equipped with 50 µm mesh (not 
generally processed). Quad net tows are made from 100 m to the surface at the 13 primary 
stations along the Seward Line, and at all PWS stations. During night-time, a 0.25-m2 
Hydrobios Multinet system with 0.5 mm mesh nets is fished to assess larger 
meso/macrozooplankton and micronekton, such as euphausiids that are important 
components in the diet of many fish, sea-birds and marine mammals. The Multinet is 
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equipped with one drogue net plus five nets that can be programmed to open and close at 
specific depths, or opened and closed electronically from the deck if a conducting cable is 
available. Depth, flow meter counts, and volume filtered are recorded at 1 second intervals. 
The Multinet is fished at each of the 13 primary Seward Line stations (Fig. 1), plus the 10-
12 stations within PWS. At each station, 5 samples are collected at 20 m depth intervals 
from 100 m depth to the surface. As time permits, additional Multinet collections are made 
to 600 m at GAK13 and PWS2 to assess over-wintering populations of Neocalanus spp. in 5 
layers: 600-400 m, 400-300 m, 300-200 m, 200-100 m, and 100-0 m. All zooplankton 
samples are preserved in 5-10% formalin and stained with Rose Bengal for later analysis to 
the lowest taxonomic category possible.  

During traditional taxonomic processing, all larger organisms (primarily shrimp and jelly 
fish) are removed and enumerated, and the sample is repeatedly split using a Folsom 
splitter until the smallest subsample contains about 100 specimens of the most abundant 
taxa. The most abundant taxa are identified, copepodites staged, measured, enumerated 
and weighed, with each larger subsample examined for the larger, less abundant taxa. 
Blotted wet weights of all specimens of each taxa and stage are taken on each sample with 
±1 μg Cahn Electrobalance until weights stabilize, after which point the wet weight biomass 
is estimated using mean wet weight. Wet weights on euphausiids, shrimp and other larger 
taxa are always measured and recorded individually for each sample. Typically at least 
400-600 organisms are recorded per net-sample. The data are uploaded to a Microsoft 
Access database for sorting and analysis. Long-term patterns and trends are typically 
performed on power-transformed data (typically power 0.15). Analysis to date indicates 
the Multinet collections are consistent with those obtained using a 1.0 m2 MOCNESS during 
the GLOBEC years (1998-2004). 

Multivariate analyses employ non-parametric multidimensional scaling (nMDS) of Bray-
Curtis similarity index between samples (Clarke et al. 2014) using the Primer (V7) software 
package. Abundances are fourth-root transformed, and only taxa contributing at least 3% 
to transformed values are retained for analyses.  

Seabirds and Mammals 
The Seward Line design (spring and fall seasons, cross-shelf) provides an opportunity to 
examine seabird and marine mammal responses to seasonal changes and the cross-shelf 
gradient of physical and biological parameters. The spring survey occurs just prior to or at 
the beginning of the breeding period and the fall survey occurs when birds must prepare 
for harsh winter conditions or long migrations. Seabird distribution patterns vary among 
species. However, we might expect inshore shifts in distribution of ‘offshore’ seabirds 
during storms or upwelling events, while years with strong stratification inshore might 
drive ‘inshore’ seabird species toward the shelf break, where upwelling is more consistent 
and prey may be more available. Similarly, many marine mammals have seasonal 
migrations, while others are resident, sometimes with seasonal differences in habitat 
utilization. 

Marine bird and mammal surveys use standard strip-transect methodology and USFWS 
protocols (USFWS 2008), with one observer stationed on the flying bridge, entering data 
into a GPS-integrated laptop computer. While bird data is considered relatively 
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quantitative because it surveys an area in relative proximity to the ship, mammal data is 
more qualitative owing to species-specific differences in detection and assigning an 
animal’s distance from the ship both of which are greatly influenced by sea-state and 
atmospheric visibility. Marine bird data are processed by subdividing continuous survey 
transects into 3-km segments and calculating the density (birds • km-2) of each seabird 
taxon within each segment. Marine mammal data is simply plotted as occurrence. To 
examine distribution across the shelf, the study area is divided into four regions, using data 
collected on any transects within 80 km of the Seward Line and within PWS. The PWS 
region is separated from the inner shelf region at the ocean entrances. Because the Alaska 
Coastal Current front is typically within 50 km from shore near the Seward Line, a 50 km 
shoreline buffer is used to separate the inner shelf from the middle shelf. The oceanic 
region extends from the shelf-break at the 1000 m isobath to past the last Seward Line 
station.  

For seabirds, we calculate the mean density of each taxon for each cruise and region and 
compare cross-shelf distributional patterns of marine birds during ‘cold’ vs ‘warm’ years. 
The temperature regimes are defined by the springtime average water temperature in the 
upper 100 m. We combined data from years 2007-2009, 2013 for cold years, and data from 
2010, 2014, 2015 for warm years (2011 and 2012 were removed; they were near average 
or had no seabird survey). We focused on 10 seabird taxa that regularly occurred in both 
spring and fall. For mapping, density values of 3-km transects were averaged using 20-km 
hexagonal grid cells. 

RESULTS 
Each Seward Line cruise collects a wealth of information, but we do not believe this report 
is well-served by presenting all such details. We will primarily summarize the larger scale 
patterns observed during the study period, and in particular by placing them in the context 
of the prior 15 years of sampling. Observations made within PWS have generally not been 
presented, for efficiency, and because their shorter duration provides more limited context.  

Physics 
Using the average temperature within the upper 100m of the ocean as a heat index, it is 
clear that May temperatures along the Seward Line were well above average during 2015 
and 2016 (Fig. 2). This anomaly was due to the sequential occurrence of a feature referred 
to as “the Blob” that began in early 2014 followed by an El Niño during 2015/16. It is 
notable that the other two warm May months in the time series, 1998 and 2003, were also 
El Niño-related. September temperatures and their anomalies appear less clearly 
influenced by El Niño events; however, 2014-2016 appears consistently warm. A unique 
aspect of the 2014-2016 warm period was the large depth range over which this extra heat 
was distributed, with anomalously warm temperatures occurring down to 300 m (Fig. 3). 
The apparent negative anomalies at 30-50m during the falls of 2014-2016 are a 
manifestation of the thermocline being shallower and more abrupt than normal.  
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Figure 2. Average water temperatures in the upper 100 m along the Seward Line during 
May and September (upper), and the station-specific temperature anomalies (lower). 

 

Figure 3. Water temperature anomalies (color bar) along the Seward Line during May and 
September for the 5-year study period. 
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Figure 4. Aragonite saturation state (Ω) along the Seward Line 2012-2015. J. Mathis, 
preliminary data. 

 

Carbonate system 
Although offshore data was limited during May 2012 and 2013, prior to the warm water 
anomaly, we observe under-saturation of aragonite (i.e., Ω<1) in the deeper and more 
offshore waters during May, with more acute under-saturation observed during September 
(Fig. 4). Arrival of the anomaly in September 2014 corresponded to more consistently 
saturated system during spring and fall, patterns that are being more fully described 
elsewhere (Evans et al. 2013, Siedlecki et al. 2017, Mathis et al. in prep).  

Macronutrients 
Macronutrient concentrations in surface waters during May reflect the extent to which the 
nutrients recharged into surface waters during winter have been utilized by the spring 
phytoplankton community. High concentrations observed at most stations during 2014 
suggest pre-bloom conditions. Moderate concentrations observed during 2012 and 2015 
suggest the cruise occurred during the pre-bloom or early bloom periods (except the inner 
station where nutrients were already depleted), while the moderate to low concentrations 
during 2013 and 2016 suggest the bloom was well underway or had already occurred (Fig. 
5). These interpretations are supported by comparison to concurrent measurement of 
chlorophyll (see below). It is notable that GAK1, and sometimes GAK2, are generally 
depleted in nutrients by the May cruise. Nutrients remain depleted in surface water 
through early fall when wind mixing of the water column commences, as is apparent in 
several years. During September of 2015-2016 nitrate remained below 1 µM at all stations 
and was only slightly higher during 2014. 

The ratios of macronutrients during May 2013 and (on most of the shelf) during 2014, 
shows the silicate:nitrate drawdown ratio in surface waters was 1.8 (Fig. 6). In the recent 
warm years, and especially during 2016, silicic acid drawdown associated with spring 
production is more modest, with an overall silicate:nitrate drawdown ratio of 1.1, 
suggestive of a lower silica demand by diatoms. 
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Figure 5. Nitrate concentration in near-surface (<10m) waters of the Seward Line during 
May (left) and September (right). 

 

Phytoplankton (Chlorophyll) 
Phytoplankton measurements during May target the month of typically highest chlorophyll 
concentration over the shelf in the satellite record when rapid phytoplankton growth 
outpaces grazing pressure. Nonetheless, in the past two decades we have rarely sampled a 
fully developed bloom coherent across the entire Seward Line, either because we have 
missed it, or because it was not manifested in a given year (e.g., 2011 and possibly some of 
the ”Blob” years). In general, satellites reveal that PWS and the innermost shelf bloom  
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Figure 7. Average integrated May chlorophyll by shelf zone (inner = GAK 1-4; mid = GAK 5-
9; outer = GAK 10-13). 

earliest, often several weeks before the remainder of the shelf, due to stratification induced 
by their fresher surface waters. The highest chlorophyll concentrations during the last 5 
years were observed during May 2013, but they were not coherent across the shelf 
suggesting different cross-shelf domains were at different stages in bloom progression (Fig. 
7). In contrast, the early bloom period observed during 2012 shows high coherence across 
the shelf. Chlorophyll concentrations observed during September were typically lower than 
observed during May, but also relatively variable across shelf domains.  

The spring phytoplankton bloom normally is driven by a shift toward predominance of 
large cells (Fig. 8). The warm-water anomaly in 2014-2016 resulted in reduced chlorophyll 
(<45 mg m-2) during May when the spring bloom normally occurs (i.e., maxima in the 40-
100 mg m-2 range). In addition, elevated chlorophyll events during these warm years 
occurred mainly as small cells, rather than large cells as are typical. In addition to these 
changes in community composition, satellite ocean color data indicate major (many weeks) 
alterations in bloom timing, with minor peaks observed earlier (early April 2016) and the 
main peak observed later (late May 2015 and 2016) than the typical early May timing.  

Figure 8. Contribution of the large phytoplankton size-fraction to total integrated 
chlorophyll a (left). MODIS Aqua satellite-derived surface chlorophyll for 8-day time 
intervals centered on midpoint of observation period (right). 
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Primary Production 
During spring of 2012-2014, chlorophyll anomalies suggest high productivity, in contrast 
to 2015 and 2016 when productivity was low (Fig. 9). During summer, the pre-blob years 
had above average productivity while the blob years had low productivity. It is notable that 
low productivity during spring is often offset by a delayed summer bloom, however that 
was not the case during 2015 and particularly during 2016. The 2016 April through August 
time interval had the lowest average chlorophyll estimated for the Seward Line region over 
the 14-year observational life of the MODIS satellite. The only other year with comparable 
strong negative anomalies in both season was 2003 which was similar to 2016 in that it 
was characterized by a strong El Niño event.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Microzooplankton 
As for phytoplankton, microzooplankton biomass is typically higher in spring than fall (Fig, 
10). It is notable that the “Blob” years of 2015 and 2016 showed very low spring biomass 
levels (even lower than in the low-bloom year of 2011; see Strom et al. 2017). The warm 
autumns of 2014 and 2015 also had exceptionally low biomass on all or part of the Seward 
Line. The coastal GOA tends to be a ciliate-dominated community, with dinoflagellates 
more important during high-production years (e.g., 2013) and in higher production regions 
(e.g., nearshore in fall). Although microzooplankton size data are not fully processed, the 
size composition of the community reflects the biomass trends, with low biomass springs 
of 2015 and 2016 mainly consisting of very small (≤20 µm) ciliates. 

Figure 9. Seasonal chlorophyll anomalies observed along the Seward Line 2003-2016. 
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We are also finding that most large ciliates in the coastal GOA, and perhaps most ciliates of 
any size, retain chloroplasts from their ingested phytoplankton prey (termed ‘stolen’ 
chloroplasts). These chloroplasts remain functional inside the ciliate for days to weeks, and 
can contribute fixed carbon in substantial quantities to support respiration, a strategy 
thought to be important when phytoplankton production is intermittent.  

 

  

Figure 10. Microzooplankton biomass (top) and fraction of ciliates (bottom) along the 
Seward Line during May and September. Analysis of 2016 samples is still in progress. 

Metazooplankton 
The metazoan zooplankton community on the GOA shelf consists of over 200 recognized 
holoplanktonic species, of which about 3 dozen contribute the majority of the abundance 
and biomass (Appendix 2). The major suspension feeding groups captured by the 500-µm 
nets are the calanoid copepods and euphausiids, while the cnidarians (jellyfish and kin) 
and chaetognaths (arrow worms) are the major planktonic predators. Over the last 5 years, 
large calanoid abundance and biomass during May has increased steadily from below to 
above the long-term mean, while euphausiid abundance and biomass have been variable, 
with particularly low biomass during 2015-2016 (Fig. 11). Chaetognath abundance and 
biomass over this period have been at or below the long-term mean, except for 2016 when 
both exceeded the long-term mean. Cnidarian abundance increased significantly during 
2015-2016, but without consistent correspondence to biomass.  
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The 150-µm nets better assess the abundance of the smaller calanoid copepods, the 
cyclopoid copepods, the larvaceans, and the shelled pteropods (Fig. 12). Over the past 5 
years the abundance of these groups during May was typically near their long-term mean 
except for 2016 when abundances were generally significantly higher. Although very 
abundant, the smaller body size of these taxa meant their biomass was always relatively 
low in comparison to the larger-bodies species. It is notable that the long-term mean 
biomass of calanoids captured by the 150-µm nets during May was nearly the same as that 
estimated by the 500-µm nets; this demonstrates that spring biomass is dominated by the 
larger-bodied copepods. 

By late summer, large calanoid abundance and biomass in the 500-µm nets have declined 
compared to May, while the abundance of euphausiids, chaetognaths and cnidarians 
remains similar to May, but with lower euphausiid biomass (Fig. 13). Large calanoid and 
chaetognath (and to a lesser extent euphausiid) abundance and biomass declined in 2015 
compared to 2012-2014, while that of cnidarians increased in 2014 and 2015. Over the 
past 5 years the late summer abundance and biomass of the smaller calanoids, cyclopoids, 
larvaceans, and shelled pteropods in the 150-µm nets has been variable, with some years 
above the long-term mean (Fig. 14). The long-term mean abundance of small calanoids and 
cyclopoids was similar in fall to that of spring, while larvaceans and pteropods appear 
somewhat less abundant. It is notable that the long-term mean biomass of calanoids 
captured by the 150-µm nets during late-summer was nearly double that estimated by the 
500-µm nets; this reflects the predominance of smaller-bodied copepod species during late 
summer. 

During May, the predominant species within the larger copepods are Neocalanus 
plumchrus/flemingeri, Metridia pacifica, N. cristatus, and Eucalanus bungii, all of which have 
shown variability, but without systematic pattern. During May, the smaller copepods are 
numerically dominated by Pseudocalanus spp., Oithona similis, Triconia borealis, and to a 
lesser degree Acartia spp. The ontogenetic descent of the three Neocalanus species during 
late spring and early summer increases the relative importance of the remaining species, 
which show variability but no consistent patterns in their mean abundances during the fall. 
A notable trend within the copepods has been the increased prevalence and abundance of 
several California Current species, initially only observed during late-summer but most 
recently also observed during May albeit at extremely low abundances (Fig. 15). During 
2016, these warm water species represented 10% of the calanoid community. Similarly, 
increases during the recent warm water years can be seen during May for the warm-water 
euphausiids Thysanoessa inspinata and Euphausia pacifica and during late-summer for the 
hydrozoan Eirene indicans.  

Exploration of community structure using nMDS reveals a general cross-shelf patterning 
during spring, with PWS representing the most inshore habitat, but without a clear 
relationship to water temperature (Fig. 16). Late summer samples also show a clear cross-
shelf structure, and while temperature does not appear to consistently relate to community 
structure, it is notable that the warm autumns of 2014-2016 all cluster closely along one 
edge of the projections – a pattern that is even clearer when the data are viewed as a 3-
dimensional projection (not shown).  
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Figure 11. Abundance and wet-weight biomass of major zooplankton groups captured by 
500µm-nets along the Seward Line during May 1998-2016. Error bars are 95% confidence 
intervals. Red line is the long-term mean bracketed by its confidence interval. 

  

Calanoids (May)

2000 2005 2010 2015

M
ea

n 
Ab

un
da

nc
e 

(N
o 

m
-3

)

0

100

200

300

400

500

Euphausiids (May)

2000 2005 2010 2015

M
ea

n 
Ab

un
da

nc
e 

(N
o 

m
-3

)

0

5

10

15

20

25

30

Calanoida (May)

2000 2005 2010 2015

M
ea

n 
B

io
m

as
s 

(m
g 

m
-3

)

0

100

200

300

400

500

600

700

Euphausiids (May)

2000 2005 2010 2015

M
ea

n 
B

io
m

as
s 

(m
g 

m
-3

)

0

20

40

60

80

100

Chaetognaths (May)

2000 2005 2010 2015

M
ea

n 
Ab

un
da

nc
e 

(N
o 

m
-3

)

0.0

0.5

1.0

1.5

2.0

2.5
Chaetognaths (May)

2000 2005 2010 2015

M
ea

n 
B

io
m

as
s 

(m
g 

m
-3

)

0

5

10

15

20

25

30

Cnidarians (May)

2000 2005 2010 2015

M
ea

n 
Ab

un
da

nc
e 

(N
o 

m
-3

)

0

5

10

15

20

25

30
Cnidaria (May)

2000 2005 2010 2015

M
ea

n 
B

io
m

as
s 

(m
g 

m
-3

)

0

20

40

60

80



17 
 

Figure 12. Abundance and wet-weight biomass of major zooplankton groups captured by 
150µm-nets along the Seward Line during May 1998-2016. Error bars are 95% confidence 
intervals. Red line is the long-term mean bracketed by its confidence interval. Data for 
2016 is preliminary and lacks biomass estimates. 
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Figure 13. Abundance and wet-weight biomass of major zooplankton groups captured by 
500µm-nets along the Seward Line during late-summer 1998-2015. Error bars are 95% 
confidence intervals. Red line is the long-term mean bracketed by its confidence interval. 
Data for 2016 is not yet available. 
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Figure 14. Abundance and wet-weight biomass of major zooplankton groups captured by 
150µm-nets along the Seward Line during late-summer 1997-2016. Error bars are 95% 
confidence intervals. Red line is the long-term mean bracketed by its confidence interval. 
Data for 2016 is preliminary and lacks biomass estimates. 
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Figure 15. Abundance of four California Current calanoid copepods captured by 150µm-
nets along the Seward Line during May (left) and late-summer (right) 1997-2016. Error 
bars are 95% confidence intervals. 
 

Figure 16. Two-dimensional projection of station similarity for 500-µm nets during May 
(left), and 150-µm nets during late summer (right). Color codes highlight cross shelf 
patterning and interannual patterning in relation to temperature (hot=red, warm=light red, 
neutral=gray, cool=light blue, cold=blue. 
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Seabirds and Marine Mammals 
Survey effort for all cruises covered 7056 km in spring and 7420 km in fall. These surveys 
included transits from Homer to Resurrection Bay; transects used in analysis (2007-2015) 
within the Seward Line study area (Fig. 1) totaled 4241 km in spring and 4836 km in fall. 
For all surveys combined we observed 61 species of marine birds and 9 species of marine 
mammals. The numerically dominant species of marine birds were common murres (Uria 
aalge) and black-legged kittiwakes (Rissa tridactyla), both of which breed along the coast of 
the study area. Other abundant species included tufted puffins (Fratercula cirrhata), 
northern fulmars (Fulmarus glacialis), and fork-tailed storm-petrels (Oceanodroma 
furcate). In fall, sooty shearwaters (Ardenna griseus) and phalaropes (Phalaropus spp.) 
were also abundant. Shearwaters (Ardenna spp.) come from southern hemisphere breeding 
grounds to forage in Alaska during the northern summer and fall, while phalaropes are 
migrating south from northern Alaska breeding sites.  

Overall, marine bird densities were higher during warm years, especially in fall (Fig. 17). 
PWS and the inner shelf showed the greatest differences between warm and cold years, 
particularly for ‘inshore’ species (larids, alcids, cormorants). ‘Offshore’ groups (fulmars, 
storm-petrels, albatrosses) always occupied mid-shelf and oceanic regions, although 
densities varied relative to temperature regimes. Shearwaters were more abundant during 
warm years, when they shifted from the mid-shelf and oceanic regions in spring to the 
inner shelf in fall.  

Tests for differences between warm and cold years (Wilcoxon-Mann-Whitney rank-sum 
test with Holm-Bonferroni multiple comparison adjustment within seasons; α = 0.05) 
indicated that the observed shift in distributions or abundance was significant for the 
following: shearwaters (higher in warm years from inner shelf to oceanic in fall); fulmars 
(higher densities during cold years in spring, but higher in warm years during fall); 
kittiwakes (higher in PWS during warm years for spring and fall); murres (higher in PWS 
and inner shelf in warm years, spring and fall); puffins (higher in cold years on mid-shelf in 
spring). For total birds combined (Fig. 18), densities were significantly higher in warm 
years in PWS and inner shelf waters in spring, and across all regions in fall.  

Marine mammal observations suggest both baleen and toothed are broadly distributed 
throughout the survey area (Fig. 19). Baleen whales are dominated by fin (Balaenoptera 
physalus) and humpback (Megaptera novaeangliae) while toothed whales are dominated by 
Dall’s porpoise (Phocoenoides dalli). For pinnipeds, Steller sea lions (Eumetopias jubatus) 
and harbor seals (Phoca vitulina) were most commonly observed, with both appearing to 
prefer coastal waters. Sea otters (Enhydra lutris) were entirely restricted to nearshore 
waters. The qualitative nature of mammal data precludes more in depth analysis. 
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Figure 17. Cross-shelf distribution of 10 species-groups seasonally and between warm and 
cold years. Species groups on x-axis are arranged by tendency to be inshore to offshore 
foragers. Inshore species showed greatest differences between warm and cold years. 

 

Figure 18. Distribution of total marine birds within the Seward Line study area, 2007-2015, 
for spring and fall during cold (2007-2009, 2013) and warm (2010, 2014, 2015) years.  
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Figure 19. Distribution of marine mammals for Seward Line and Prince William Sound 
region during 2012-2016 cruises. Black lines represent survey effort. 

 

DISCUSSION 
For the most part our observations along the Seward Line are consistent with earlier 
observations regarding the major properties of this system in terms of its physics 
(Weingartner 2007), nutrient chemistry (Childers et al. 2005), phytoplankton (Strom et al. 
2006), microzooplankton (Strom et al. 2007),  and metazooplankton  communities  (Coyle 
and Pinchuk 2003, 2005). What this study adds is an increasing appreciation of the long-
term mean values and particularly variability in response to environmental changes. 
Interannual differences in physical forcing within the GOA are readily manifested in the 
oceanographic environment (Janout et al. 2010), and these drive changes in both the 
phytoplankton response (Stabeno et al. 2016a,b, Strom et al. 2016), and the zooplankton 
communities (Doubleday and Hopcroft 2015, Sousa et al. 2016). Physical perturbations can 
result in unusual events at both lower trophic levels, such as the salp bloom during 2011 
(Li et al. 2016), and at upper trophic levels, such as the recent murre mortality event 
(USFWS 2016).  
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The GOA is experiencing long-term warming and increased intensity of stratification 
(Weingartner and Danielson 2017). Nonetheless, the 2012-2016 period has seen 
considerable range in most of the observations made along the Seward Line: 2012 and 
2013 were at or slightly below the climatological mean temperature, while late summer of 
2014 and both seasons in 2015 and 2016 were well above the long-term mean 
temperatures. The synergistic effect of the 2016 El Niño building upon the Blob resulted in 
temperatures that exceeded those of both the 1997/98 and 2003 El Niño events. In recent 
decades the impact of El Niño on planktonic communities has been well documented along 
the North American coast (Peterson et al. 2002), with such events typically resulting in 
reduced primary production (Kahru and Mitchell 2000, Whitney and Welch 2002), 
increased coastal transport (Keister et al. 2011) and altered zooplankton species 
composition (Keister et al. 2005), all of which may impact higher trophic levels. Although 
the warm surface waters of the “Blob” in the GOA arose by a different mechanism (Bond et 
al. 2015), its ecological impacts in the GOA were similar to those associated with El Niño 
events, as has also been shown for the California Current System (Leising et al. 2015). Our 
observations reveal that the warm conditions reduced the mean cell size of the lowest 
trophic levels (phytoplankton and microzooplankton), and increased the contribution of 
smaller-bodied warm-water zooplankton species, as has been documented further to the 
south (i.e., Mackas et al. 2001, 2004, 2007).  

Macronutrient, phytoplankton and microzooplankton time series all show a clear influence 
of the warmer 2015 and 2016 conditions. During 2013 and (on most of the shelf) 2014, the 
silicate:nitrate drawdown ratio in surface waters was 1.8, in agreement with the average 
reported by Strom et al. (2006) for May diatom-dominated communities on the Seward 
Line during the early 2000s. These nutrient ratios agree with chlorophyll data showing a 
bloom trajectory by which increases in chlorophyll are associated with increases in large 
cells (diatoms) on most of the shelf. In the recent warm years, however, silicic acid 
drawdown associated with spring production is more modest, with an overall 
silicate:nitrate drawdown ratio of 1.1. This is consistent with chlorophyll increases on the 
shelf in the springs of 2015 and 2016 being associated with smaller non-diatom 
phytoplankton. In addition to these changes in phytoplankton community composition, 
satellite ocean color data indicate delayed bloom timing and reduced magnitude.  

Microzooplankton communities strongly reflected these interannual differences, with the 
warm springs of 2015 and 2016 having a low biomass community of small cells, mainly 
ciliates. Overall, the recent warm conditions have changed the spring protist assemblage 
from one dominated by chain diatoms, large ciliates and dinoflagellates (Strom et al. 2006, 
2007, 2016), to one comprised mostly of small flagellate phytoplankton and small ciliates. 
This shift is likely to reduce the efficiency of production transfer to larger animals through 
the introduction of additional trophic levels near the base of the food web. However, the 
appearance of new, smaller mesozooplankton species adapted to warmer conditions may 
partially alleviate these reductions in efficiency. The question of why diatoms were less 
important in the recent warm years, despite growth-saturating spring concentrations of 
silicic acid and nitrate, awaits process studies that can address the mechanisms regulating 
spring production. Similarly, recent models (e.g., Ward and Follows 2016) also show that 
the presence of chloroplast-retaining ciliates has major implications for trophic transfer 
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efficiency, overall primary production, and the resilience of planktonic food webs. We are 
in the process of developing quantitative approaches to the sampling and enumeration of 
these ciliates. 

It is notable that despite high interannual thermal variability, many of the dominant 
zooplankton species in the GOA remain resilient to this variability, and do not show 
variability easily attributable to simple temperature forcing. This is particularly true during 
spring, when the keystone large-bodied species are generally uncoupled from ambient 
thermal conditions because their recruitment has been fueled by egg production 
dependent on lipids stored the previous year (Mackas and Tsuda 1999). For these species, 
factors that affect cross-shelf transport may be of greater consequence in determining local 
abundance (Mackas and Coyle 2005), and this in part maintains the strong cross-shelf 
gradients in the Gulf (Brickley and Thomas 2004, Coyle and Pinchuk 2005, Waite and 
Mueter 2013) that are apparent in our data. Nonetheless, in contrast to the spring, changes 
in the lowest trophic level composition and community structure are apparent during the 
fall, and likely related to increased survival of warm-water species that are normally 
seeded into the coastal waters where the North Pacific Current bifurcates (Mackas et al. 
2007). The 2014-2016 samples during a period of extreme upper mixed layer heating 
suggests that the community structure is shifting toward a new domain not simply 
reflective of prior El Niño events. Other Gulf Watch Alaska investigators also observed 
shifts in zooplankton community structure associated with the warm anomaly (Batten et al. 
2018, McKinstry and Campbell 2018). Thus, zooplankton may serve as important sentinels 
of ecosystem change (Richardson 2008), and their time-series collectively provide a means 
to examine change at global scales (Ji et al. 2010, Mackas et al. 2012). If the heat of the 
multiyear anomalous warm “Blob” dissipates, then lower trophic species compositions may 
return to those more typically observed during the past 15 years along the Seward Line.  

At higher trophic levels, observations indicate that ‘inshore’ species of marine birds were 
most affected by changes in conditions in the northern GOA. PWS and the inner shelf 
became concentrated with inshore seabird species during warm years, including large 
numbers of migrant shearwaters (typically found farther offshore) into the inner shelf. 
Although seabirds increased inshore during warm years, recent seabird die-offs (from 
starvation) suggest that the shift in distribution may not have provided favorable foraging 
conditions in those regions for all birds. Rather, the shift inshore may reflect a response to 
more highly stratified waters throughout the GOA shelf during warm years. Based on 
oceanographic data, a typical pattern for a cold year, such as 2009, shows deeper, complex 
layers of low salinity waters. In warm years like 2015, the extension of high salinity 
offshore waters into the mid and inner shelf may have influenced the displacement (and 
concentration) of marine birds into the inshore regions, presumably because of changes to 
prey distribution. During warm years, the mixed layer depth is also typically shallower and 
the water column more strongly stratified than during cold years. Weak water-column 
mixing then affects primary productivity and prey, ultimately impacting upper trophic-
level foragers like seabirds. 
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CONCLUSIONS 
Many aspects of the GOA ecosystem show interannual variability, but notable changes have 
occurred since the fall of 2014 due to warm-water anomalies generated by a combination 
of the “Blob” and El Niño. These changes foreshadow the production regime that could be 
expected if the frequency and/or intensity of such warm events were to increase. If current 
long-term warming and stratification trends continue in the GOA this will likely result in a 
seasonally earlier and altered composition of the spring bloom, followed by a longer 
oceanographic summer with higher temperatures and reduced productivity. Based on our 
recent observations, we can expect increased contributions of warm water planktonic 
species and changes to energy and nutrient flux pathways. This would contribute to a 
further shoreward distribution of and reduced abundances of seabirds. Negative 
consequences to fisheries are also likely, with higher temperatures increasing fish 
metabolic demand, while at the same time the zooplankton prey available may be of 
reduced size and energetic quality. Continued observations along the Seward Line, 
improved collaborations with NOAA Fisheries, and expanded observations in the GOA by 
the National Science Foundation’s Long-Term Ecological Research Network should ensure 
we are better poised to study future ecosystem responses to climatological change.  
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APPENDIX 2. HOLOZOOPLANKON TAXA 
Phylum Class Order Family Scientific Name 
Annelida Polychaeta Phyllodocida Syllidae Myrianida 

   
Tomopteridae Tomopteris 

   
Typhloscolecidae Typhloscolex muelleri 

Arthropoda Branchiopoda Diplostraca Podonidae Evadne nordmanni 

   
Podonidae Podon leuckarti 

 
Hexanauplia Calanoida Acartiidae Acartia clausi 

   
Acartiidae Acartia danae 

   
Acartiidae Acartia longiremis 

   
Acartiidae Acartia tumida 

   
Aetideidae Aetideus armatus 

   
Aetideidae Aetideus pacificus 

   
Aetideidae Bradyidius saanichi 

   
Aetideidae Chiridius gracilis 

   
Aetideidae Chiridius obtusifrons 

   
Aetideidae Chiridius polaris 

   
Aetideidae Chirundina streetsii 

   
Aetideidae Euchirella pseudopulchra 

   
Aetideidae Euchirella pulchra 

   
Aetideidae Euchirella rostrata 

   
Aetideidae Gaetanus campbellae 

   
Aetideidae Gaetanus minutus 

   
Aetideidae Pseudochirella obtusa 

   
Aetideidae Undeuchaeta intermedia 

   
Arietellidae Arietellus setosus 

   
Augaptilidae Pseudhaloptilus pacificus 

   
Calanidae Calanus marshallae 

   
Calanidae Calanus pacificus 

   
Calanidae Mesocalanus tenuicornis 

   
Calanidae Neocalanus cristatus 

   
Calanidae Neocalanus flemingeri 

   
Calanidae Neocalanus plumchrus 

   
Candaciidae Candacia bipinnata 

   
Candaciidae Candacia columbiae 

   
Centropagidae Centropages abdominalis 

   
Clausocalanidae Clausocalanus lividus 

   
Clausocalanidae Clausocalanus parapergens 

   
Clausocalanidae Microcalanus pygmmaeus 

   
Clausocalanidae Pseudocalanus minus 

   
Clausocalanidae Pseudocalanus newmanii 

   
Clausocalanidae Pseudocalanus minutus 

   
Clausocalanidae Pseudocalanus acuspes 
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Phylum Class Order Family Scientific Name 

   
Eucalanidae Eucalanus bungii 

   
Euchaetidae Paraeuchaeta elongata 

   
Heterorhabdidae Heterorhabdus clausi 

   
Heterorhabdidae Heterorhabdus pacificus 

   
Heterorhabdidae Heterorhabdus papilliger 

   
Heterorhabdidae Paraheterorhabdus robustus 

   
Heterorhabdidae Heterorhabdus tanneri 

   
Heterorhabdidae Heterostylites longicornis 

   
Heterorhabdidae Heterostylites major 

   
Lucicutiidae Lucicutia curta 

   
Lucicutiidae Lucicutia flavicornis 

   
Lucicutiidae Lucicutia ovalis 

   
Metridinidae Gaussia princeps 

   
Metridinidae Metridia okhotensis 

   
Metridinidae Metridia ornata 

   
Metridinidae Metridia pacifica 

   
Metridinidae Metridia princeps 

   
Metridinidae Pleuromamma abdominalis 

   
Metridinidae Pleuromamma scutullata 

   
Metridinidae Pleuromamma xiphias 

   
Paracalanidae Calocalanus styliremis 

   
Paracalanidae Paracalanus parvus 

   
Phaennidae Onchocalanus magnus 

   
Pontellidae Epilabidocera amphitrites 

   
Scolecitrichidae Lophothrix frontalis 

   
Scolecitrichidae Pseudoamallothrix emarginata 

   
Scolecitrichidae Pseudoamallothrix inornata 

   
Scolecitrichidae Pseudoamallothrix ovata 

   
Scolecitrichidae Racovitzanus antarcticus 

   
Scolecitrichidae Scaphocalanus brevicornis 

   
Scolecitrichidae Scaphocalanus echinatus 

   
Scolecitrichidae Scaphocalanus magnus 

   
Scolecitrichidae Scolecithricella minor 

   
Scolecitrichidae Scolecithrix 

   
Scolecitrichidae Scottocalanus persecans 

   
Temoridae Eurytemora 

   
Tharybidae Tharybis fultoni 

   
Tortanidae Tortanus discaudatus 

  
Cyclopoida Oithonidae Oithona similis 

   
Oithonidae Oithona setigera 

  
Harpacticoida Ectinosomatidae Microsetella 

   
Tisbidae Tisbe 
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Phylum Class Order Family Scientific Name 

  
Monstrilloida Monstrillidae Monstrilla 

  
Poecilostomatoida Corycaeidae Corycaeus 

   
Lubbockiidae Lubbockia wilsonae 

   
Lubbockiidae Pseudolubbockia dilatata 

   
Oncaeidae Oncaea 

 
  

Siphonostomatoida 
   

 
Malacostraca Amphipoda Atylidae Atylus 

 
   

Cyphocarididae Cyphocaris challengeri 

   
Dairellidae Dairella 

 
   

Eusiridae Rhachotropis 

   
Hyperiidae Hyperia medusarum 

   
Hyperiidae Hyperia 

 
   

Hyperiidae Hyperoche medusarum 

   
Hyperiidae Themisto libellula 

   
Hyperiidae Themisto pacifica 

   
Lanceolidae Lanceola clausii 

   
Paraphronimidae Paraphronima crassipes 

   
Pardaliscidae Nicippe tumida 

   
Phronimidae Phronima sedentaria 

   
Phrosinidae Primno macropa 

   
Scinidae Scina borealis 

   
Vibiliidae Vibilia caeca 

  
Decapoda Pasiphaeidae Pasiphaea pacifica 

   
Pasiphaeidae Pasiphaea tarda 

   
Sergestidae Eusergestes similis 

  
Euphausiacea Euphausiidae Euphausia pacifica 

    
Nematoscelis difficilis 

    
Stylocheiron maximum 

    
Tessarabrachion oculatum 

    
Thysanoessa inermis 

    
Thysanoessa inspinata 

    
Thysanoessa longipes 

    
Thysanoessa raschii 

    
Thysanoessa spinifera 

  
Isopoda Munnopsidae* 

  
  

Isopoda Microniscidae 
  

  
Lophogastrida Gnathophausiidae Neognathophausia gigas 

  
Mysida Mysidae Caesaromysis hispida 

    
Acanthomysis stelleri 

    
Meterythrops robustus 

    
Neomysis mercedis 

    
Neomysis rayii 
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Phylum Class Order Family Scientific Name 

    
Pacifacanthomysis nephrophthalma 

    
Pseudomma 

    
Stilomysis grandis 

    
Xenacanthomysis pseudomacropsis 

 
Ostracoda Halocyprida Halocyprididae* 

  Chaetognatha Sagittoidea Aphragmophora Sagittidae Parasagitta elegans 

    
Pseudosagitta lyra 

  
Phragmophora Eukrohniidae Eukrohnia hamata 

Chordata Larvacea Copelata Fritillariidae Appendicularia sicula 

   
Fritillariidae Fritillaria borelais 

   
Fritillariidae Fritillaria pellucida 

   
Oikopleuridae Oikopleura dioica 

   
Oikopleuridae Oikopleura labradorensis 

   
Oikopleuridae Oikopleura 

 
Thaliacea Doliolida Doliolidae Dolioletta 

  
Salpida Salpidae Cyclosalpa bakeri 

    
Salpa aspera 

    
Salpa fusiformis 

Cnidaria Hydrozoa Anthoathecata Boreohydridae Plotocnide borealis 

   
Bougainvilliidae Bougainvillia principis 

    
Bougainvillia superciliaris 

    
Bougainvillia 

   
Bythotiaridae Calycopsis nematomorpha 

   
Corymorphidae Euphysa flammea 

   
Corynidae Sarsia princeps 

    
Sarsia tubulosa 

   
Pandeidae Pandea 

 
    

Stomotoca atra 

   
Proboscidactylidae Proboscidactyla flavicirrata 

   
Rathkeidae Rathkea octopunctata 

   
Tubulariidae Hybocodon prolifer 

  
Leptothecata Aequoreidae Aequorea victoria 

   
Campanulariidae Clytia gregaria 

    
Obelia longissima 

    
Staurophora mertensii 

   
Eirenidae Eutonina indicans 

   
Laodiceidae Ptychogena lactea 

   
Melicertidae Melicertum octocostatum 

   
Mitrocomidae Mitrocoma cellularia 

    
Mitrocomidae 

   
Tiaropsidae Tiaropsidium kelseyi 

    
Tiaropsis multicirrata 
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Phylum Class Order Family Scientific Name 

  
Limnomedusae Olindiidae Eperetmus typus 

    
Gonionemus vertens 

  
Narcomedusae Aeginidae Aegina citrea 

    
Aeginopsis laurentii 

   
Cuninidae Cunina 

 
    

Solmissus marshalli 

  
Siphonophorae* 

   
   

Diphyidae Dimophyes arctica 

   
Prayidae Praya 

 
  

Trachymedusae Halicreatidae Halicreas 
 

   
Halicreatidae Haliscera 

 
   

Rhopalonematidae Aglantha digitale 

 
Scyphozoa Coronatae Atollidae Atolla 

 
   

Periphyllidae Periphylla periphylla 

  
Semaeostomeae Cyaneidae Cyanea capillata 

   
Pelagiidae Chrysaora melanaster 

   
Ulmaridae Aurelia aurita 

   
Ulmaridae Phacellophora camtschatica 

Ctenophora Nuda Beroida Beroidae Beroe cucumis 

 
Tentaculata Cydippida Pleurobrachiidae Pleurobrachia 

   
Pleurobrachiidae Hormiphora 

Mollusca Gastropoda Gymnosomata Clionidae Clione limacina 

  
Gymnosomata Pneumodermatidae Pneumodermopsis macrochira 

  
Gymnosomata* 

   
  

Littorinimorpha Carinariidae 
  

  
Thecosomata Cavoliniidae Cavolinia 

 
   

Cliidae Clio 
 

   
Creseidae Creseis 

 
   

Cymbuliidae Corolla spectabilis 

    
Cymbulia 

 
   

Limacinidae Limacina helicina 
Nemertea* 

     Cercozoa* Thecofilosea 
   * indicates a taxa where finer taxonomic resolution in not normally attempted and multiple 

species are known to be encompassed 
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